Выбор швеллера для лестницы

Расчет металлического косоура лестницы

Косоуром в лестнице называют наклонную металлическую балку, на которую опираются ступени.

Данный расчет касается металлических косоуров из прокатных швеллеров.

Внимание! В статье периодически слетает шрифт, после чего вместо знака угла наклона лестницы “альфа” отображается знак “?” Приношу извинения за неудобства.

Ширина лестничного марша 1,05 м (лестничные ступени сборные ЛС11, масса 1 ступени 105 кг). Количество косоуров – 2. Н = 1,65 м – половина высоты этажа; l1 = 3,7 м – длина косоура. Угол наклона косоура α = 27°, cosα = 0.892.

Сбор нагрузок.

Действующая нагрузка

Нормативная нагрузка, кг/м 2

Коэффициент надежности

Расчетная нагрузка, кг/м 2

Нагрузка от веса ступеней:

11шт.*105кг/(2*3,7м*1,05м)

Временная нагрузка (от веса людей, переносимых грузов и т.п.)

ИТОГО

В итоге, действующая нормативная нагрузка на наклонный косоур равна q1 н = 449 кг/м 2 , а расчетная q1 р = 584 кг/м 2 .

Расчет (подбор сечения косоура).

Первое, что нужно сделать в данном расчете, это привести нагрузку на 1 кв. м площади марша к горизонтальной и найти горизонтальную проекцию косоура. Т.е. по сути при реальной длине косоура l1 и нагрузке на 1 кв.м марша q1, мы переводим эти значения в горизонтальную плоскость через cosα так, чтобы зависимость между q и l осталась в силе.

Для этого у нас есть две формулы:

1) нагрузка на 1 м 2 горизонтальной проекции марша равна:

2) горизонтальная проекция марша равна:

Обратите внимание, что чем круче угол наклона косоура, тем меньше длина проекции марша, но тем больше нагрузка на 1 м 2 этой горизонтальной проекции. Это как раз и сохраняет зависимость между q и l, к которой мы стремимся.

В доказательство рассмотрим два косоура одинаковой длины 3м с одинаковой нагрузкой 600 кг/м 2 , но первый расположен под углом 60 градусов, а второй – 30. Из рисунка видно, что для этих косоуров проекции нагрузки и длины косоура очень сильно отличаются друг от друга, но изгибающий момент получается для обоих случаев одинаковым.

Определим нормативное и расчетное значение q, а также l для нашего примера:

q н = q н 1/cos 2 α = 449/0.892 2 = 564 кг/м 2 = 0,0564 кг/см 2 ;

q р = q р 1/cos 2 α = 584/0.892 2 = 734 кг/м 2 = 0,0734 кг/см 2 ;

Для того, чтобы подобрать сечение косоура, необходимо определить его момент сопротивления W и момент инерции I.

Момент сопротивления находим по формуле W = q р al 2 /(2*8mR), где

q р = 0,0734 кг/см 2 ;

a = 1,05 м = 105 см – ширина марша;

l = 3.3 м = 330 см – длина горизонтальной проекции косоура;

m = 0.9 – коэффициент условий работы косоура;

R = 2100 кг/см 2 – расчетное сопротивление стали марки Ст3;

2 – количество косоуров в марше;

8 – часть небезызвестной формулы определения изгибающего момента (М = ql 2 /8).

Итак, W = 0,0734*105*330 2 /(2*8*0.9*2100) = 27,8 см 3 .

Момент инерции находим по формуле I = 150*5*aq н l 3 /(384*2Еcos?) , где

Е = 2100000 кг/см 2 – модуль упругости стали;

150 – из условия максимального прогиба f = l/150;

a = 1,05 м = 105 см – ширина марша;

2 – количество косоуров в марше;

5/348 – безразмерный коэффициент.

Для тех, кто хочет разобраться подробнее в определении момента инерции, обратимся к Линовичу и выведем приведенную выше формулу (она несколько отличается от первоисточника, но результат вычислений будет одинаков).

Момент инерции можно определить из формулы допустимого относительного прогиба элемента. Прогиб косоура вычисляется по формуле: f = 5ql 4 /348EI, откуда I = 5ql 4 /348Ef.

q = аq н 1/2 = аq н cos 2 ?/2 – распределенная нагрузка на косоур от половины марша (в комментариях часто спрашивают, почему косоур считается на всю нагрузку от марша, а не на половину – так вот, двойка в этой формуле как раз и дает половину нагрузки);

f = l1/150 = l/150cos? – относительный прогиб (согласно ДСТУ «Прогибы и перемещения» для пролета 3 м).

Если подставить все в формулу, получим:

I = 150*cos?*5aq н cos 2 ? l 4 /(348*2Еlcos 4 ?) = 150*5*aq н l 3 /(348*2Еcos?).

У Линовича, по сути, то же самое, только все цифры в формуле приведены к «коэффициенту с, зависящему от прогиба». Но так как в современных нормах требования к прогибам жестче (нам нужно ограничиваться величиной 1/150 вместо 1/200), то для простоты понимания в формуле оставлены все цифры, без всяких сокращений.

Итак, I = 150*5*105*0,0564*330 3 /(384*2*2100000*0,892) = 110,9 см 4 .

Подбираем прокатный элемент из таблицы, приведенной ниже. Нам подходит швеллер №10.

Швеллер ГОСТ 8240

Момент сопротивления W, см 3

Момент инерции I, см 4

Данный расчет выполнен по рекомендациям книги Линович Л.Е. «Расчет и конструирование частей гражданских зданий» и предусматривает только подбор сечения металлического элемента. Для тех, кто хочет детальней разобраться с расчетом металлического косоура, а также с конструированием элементов лестницы, необходимо обратиться к следующим нормативным документам:

СНиП III-18-75 «Металлические конструкции»;

ДБН В.2.6-163:2010 «Стальные конструкции».

Помимо расчета косоура по приведенным выше формулам нужно еще делать расчет на зыбкость. Что это такое? Косоур может быть прочным и надежным, но при ходьбе по лестнице создается впечатление, что она вздрагивает при каждом шаге. Ощущение не из приятных, поэтому нормы предусматривают выполнение следующего условия: если нагрузить косоур сосредоточенной нагрузкой в 100 кг в середине пролета, он должен прогнуться не более, чем на 0,7 мм (см. ДСТУ Б.В.1.2-3:2006, таблица 1, п. 4).

Лестница из швеллера

Лестница из швеллера – прочная и надежная конструкция, изготавливаемая с одним или несколькими маршами, прямой или винтовой конфигурации. Может устанавливаться снаружи или внутри зданий любого назначения – жилого, промышленного или административного. С помощью декоративных элементов из полимеров, древесины, металла и стекла конструкцию адаптируют к любому интерьеру или стилю фасада.

Преимущества лестниц из швеллера и уголка

Для конструкций из прочного стального профиля характерны:

  • Устойчивость к повреждениям, высоким и низким температурам. Все элементы обрабатывают грунтовкой с последующим окрашиванием или грунт-эмалью – составом «два в одном». Это обеспечивает стойкость металлоконструкции к влаге.
  • Способность ступеней выдерживать значительную нагрузку.
  • Простое обслуживание в процессе эксплуатации.
  • Широкий перечень возможных конструктивных вариантов – традиционных и оригинальных.

При изготовлении своими руками и отсутствии дорогих элементов – кованых или изготовленных из эксклюзивных материалов – лестница из швеллера имеет вполне доступную стоимость.

Основные условия при проектировании

При проектировании лестницы учитывают основные правила:

  • Уклон конструкции для жилых строений – 30-40°.
  • Количество ступеней для одномаршевых вариантов должно быть не более 18, двухмаршевых – не более 16 штук на марш.
  • В двухмаршевой модели ширина площадки обычно равна ширине маршей.
  • Лестницы из швеллера и других видов проката, ведущие в жилом доме на второй этаж, рекомендуется изготавливать не уже 0,8 м.
  • Ширина ступени – примерно 30 см, высота – 14-20 см. В домах с детьми или людьми с ограниченными физическими способностями высоту ступеней делают не более 12 см.
  • Для стыковки элементов используют сварку или резьбовые соединения. Первый вариант более надежный, поэтому для лестниц с высокой нагрузкой выбирают именно его. Конструкции, выполняющие функции аварийных или пожарных лестниц, дополнительно усиливают.
  • Ступени наружных лестниц изготавливают из древесины или рифленого листа.

Варианты конструкций

Лестницы конструируют с различными механизмами фиксации ступеней:

  • Тетива. Это опорный элемент, на который опираются ступени. Используется только в паре. Классический вариант, отличающийся наибольшей надежностью.
  • Косоур – наклонная балка, на которой сверху на специальной гребенке располагаются проступи. Косоур может быть один или их может быть несколько.
  • Мощная центральная опора. К ней крепятся ступени винтовой лестницы.

Маршевая лестница из швеллера с косоурами

Для изготовления мало- и средненагружаемых конструкций обычно используется прокат с П-образным сечением №12 или более. Однако в каждом случае желательно произвести профессиональный расчет нагрузки. Затем с его помощью – определить, какой номер швеллера подходит для сооружения конкретной лестницы. Швеллер и уголок в основном используют для изготовления каркаса, полностью скрываемого ступенями и облицовочными материалами.

Краткое описание изготовления простейшего варианта каркаса:

  • швеллер располагают с двух сторон от ступеней полками внутрь или наружу;

  • из уголка изготавливают гребенки, привариваемые к швеллеру;
  • гребенки и перемычки из уголка, соединяющие их, служат опорами для ступеней;
  • каркас фиксируют к вертикальным и горизонтальным ограждающим конструкциям анкерами;
  • после окончания монтажных работ и испытаний на прочность проводят антикоррозионную обработку всех металлических элементов.

Для облицовки металлической лестницы из швеллера, располагаемой внутри помещения, используют гипсокартонные листы, пластик, древесные материалы, стекло. Ступени изготавливают из дерева, камня, толстого стекла, металла. Главное требование – обеспечение антискользящей поверхности проступей. Для проступей лестниц, располагаемых снаружи, используют рифленый или просечно-вытяжной лист, обладающий хорошими антискользящими характеристиками.

Самостоятельно изготовить из швеллера винтовые и другие сложные лестничные конструкции сложно. И, как правило, для устройства винтовых лестниц или моделей на одном центральном косоуре используют другие виды металлопроката, чаще всего – профильные трубы.

Читайте также:  Лестницы из мрамора: особенности материала и дизайн
Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector