Датчик NTC в котле: что это такое и как произвести монтаж?

Содержание

Где применяются датчики температуры NTC?

В быту и промышленности широко распространено применение различных типов датчиков, без которых невозможно функционирование многих систем в нашем обиходе.

К самым распространенным типам таких измерителей относятся датчики температуры. Это прибор (автономный или входящий в состав какого-то устройства), который измеряет температуру окружающей среды и посылает данный на пункт управления.

Приборы нтц являются одними из самых дешевых. Их простая модель работы позволяет использовать их в разных форматах и местах. Так, например датчик температуры ntc 10k используется на базе Ардуино для создания своих собственных систем и плат. 10k можно подсоединить в свое устройство для отслеживания необходимой температуры.

Читайте также:  Квариловые ванны: особенности и преимущества

Полупроводниковые термодатчики

В качестве примера температурного измерителя можно привести NTC – датчик температуры, применяемый для контроля за охлаждением и предотвращения переморозки. К примеру, в холодильных камерах в магазинах (витрины со скоропортящимися продуктами).

Устройство с обратным функционалом — термисторы PTC. В отличии от предыдущего, этот датчик следит за повышением температуры, дабы избежать размораживания содержимого.

Термодатчики такого типа производятся в водостойком корпусе, который оберегает чувствительный элемент от попадания влаги. Длина кабеля, в большинстве моделей, около полутора метров (при необходимости этот параметр увеличивается путем наращивания компенсационного провода)

Если принцип работы приборов PTC (Positive Temperature Coefficient) основан на повышении сопротивления при росте температуры, то NTC, напротив, уменьшает сопротивление при нагреве. Расшифровывается эта аббревиатура как Negative Temperature Coefficient. Данный тип устройств более распространен в силу меньшей стоимости.

Датчики NTC применяются:

  1. в холодильных системах, где недопустимо понижение температур ниже заданной;
  2. в комплексах вентиляции, кондиционирования и обогрева;
  3. для контроля за уровнем охлаждения в трубах и на открытом пространстве;
  4. в теплых полах.

Термисторы NTC бывают следующих видов:

  • Накладные. Монтируются на поверхность интересуемого объекта.

Пн.-Пт: 9:00 – 18:00
Сб.: 9:00 – 14:00
Вс.: Выходной

Если Вас интересует более подробная информация, свяжитесь с нами, и мы ответим на все Ваши вопросы по телефонам:

(097) 222-43-20
(095) 370-62-02
(063) 503-14-15

Датчики — «нервные окончания» современного котла

Неотъемлемыми элементами современного отопительного оборудования являются датчики. Датчик — это измерительный преобразователь, с помощью которого возможно получить информацию о происходящих процессах. Знание принципа работы всех датчиков крайне необходимо для работы сервисного инженера, поскольку практически любая диагностика котла начинается именно c проверки состояния и работы этих элементов.

Рис. 1. Термостат перегрева

Рис. 2. Датчик давления

Рис. 3. Прессостат (дифференциальное реле давления дыма, ДРД)

Рис. 4. Схема работы прессостата

Рис. 5. Датчик NTC

Рис. 6. График зависимости сопротивления датчика от температуры

Рис. 7. Накладной датчик NTC

Рис. 8. Герконовое реле

Датчики — это «нервные окончания» современного котла, которые обеспечивают связанную работу различных узлов и сложных механизмов отопительного оборудования. Кроме того, датчики помогают электронике котла вовремя распознать и предотвратить аварийный режим для безопасной эксплуатации оборудования. Благодаря датчикам электроника котла получает необходимую информацию для управления работой оборудования и контроля над всеми происходящими в это время процессами.

Функционально датчики можно разделить на три группы: предохранительные, измерительные и датчики режима работы. Рассмотрим подробнее особенности каждой из этих групп.

Следят за тем, чтобы своевременно отключить котел в случаях:

  • перегрева теплообменника;
  • плохой тяги в дымоходе;
  • низкого давления в системе отопления;
  • нарушения в системе дымоудаления в турбокотлах.

Поэтому указанные датчики называют еще и датчиками безопасности. К ним можно отнести: термостаты дыма и перегрева, прессостат и реле давления. Термостаты (рис. 1) работают по принципу битермической пластины. При нагревании термостата выше заданной температуры его контакты размыкаются, что и является сигналом для электроники.

Датчик давления в системе отопления (рис. 2) тоже подает сигнал системе с помощью размыкания своих контактов. При снижении давления ниже уровня 0,5 бар контакты реле размыкаются, и плата управления блокирует работу котла для предотвращения аварии. В котле HERMANN Eura ТМ датчик давления имеет нижнюю и верхнюю границу срабатывания.

Верхняя граница необходима для выключения автоматической подпитки котла. Реле давления, а также термостаты дыма и перегрева работают по принципу «нормально замкнуты», т.е. в нормальном режиме работы контакты замкнуты. Прессостат (или дифференциальное реле давления дыма, дальше ДРД) контролирует работу вентилятора котла, процесс дымоудаления.

Помимо этого, прессостат дает разрешение на работу горелки. Этот датчик представляет собой плоский корпус, внутренний объем которого разделен чувствительной мембраной, к которой присоединен трехконтактный микропереключатель (рис. 3).В корпусе прессостата на мембрану воздействует, с одной стороны, атмосферное давление воздуха, а с другой—давление дымовых газов, выбрасываемых вентилятором.

Таким образом, объединяются два импульса давления (негативный и позитивный). Во время нормальной работы горелки работает вентилятор, создающий давление и воздействующий при этом на мембрану, которая перемещаясь, изменяет состояние микропереключателя из нормально-разомкнутого (nс) в состояние нормально-замкнутого (na). Это хорошо видно на схеме рис. 4.

В зависимости от мощности вентилятора меняется величина срабатывания ДРД, которая измеряется в миллибарах (мбар), поэтому в разных котлах устанавливаются разные ДРД со своими номинальными значениями. Часто для поиска неисправности необходимо диагностировать работу ДРД. Для этого нужно проверять замыкание соответствующих контактов реле.

Рассмотрим алгоритм работы ДРД

  • 1 фаза. Во время поджига микропроцессор подает напряжение на контакты реле вентилятора, включая его в работу. Замкнуты контакты c и nc.
  • 2 фаза .После запуска вентилятора диафрагма реле давления меняет свое положение, по ходу переключая контакты микропереключателя. Замкнуты контакты c и na.

Микропроцессор подключает секцию поджига и контроля пламени. После окончания работы котла контакты реле должны вернуться в исходное положение (замкнуты контакты c и nc). Если этого не произошло, то во время следующей фазы поджига микропроцессор подаст напряжение только на вентилятор, а секция поджига и контроля пламени останется не активированной и розжига не произойдет.

К ним относятся датчики NTC (Negative Tempereche Sensor), которые предназначены для измерения температуры теплоносителя в контурах котла (рис. 5). Принцип работы этих датчиков следующий: при изменении температуры теплоносителя меняется температура датчика, при этом его электрическое сопротивление обратно пропорционально. При повышении температуры снижается сопротивление, и наоборот, при снижении температуры сопротивление увеличивается (рис. 6).

По величине сопротивления микропроцессор определяет температуру. В котлах HERMANN ТМ и IMMERGAS, при температуре 20°С, сопротивление датчика составляет порядка 10 кОм. Зависимость сопротивления от температуры нелинейная. Датчики NTC бывают двух видов: погружные (рис. 5), которые непосредственно контактируют с теплоносителем, и накладные, которые крепятся на медную трубку (рис. 7).У погружных датчиков инерционность меньше, чем у накладных, но они более подвержены агрессивной среде, которая неблагоприятно влияет на их работоспособность.

Датчики режима работы котла

Это датчики протока, которые устанавливаются в двухконтурных котлах для определения графика работы в режимах отопления или ГВС. Указанные датчики могут быть разной конструкции: герконовое реле, датчик Холла, микропереключатель на трехходовом клапане.

Рассмотрим принцип работы герконового реле

Внутри этого реле находится поплавок из магнитного материала, который поднимается вверх под воздействием давления потока холодной воды (более 2,5 л/мин) или динамическом давлении (0,25 бар) и воздействует своим магнитным полем на геркон (рис. 8), который установлен снаружи узла. Контакты геркона замыкаются. При разомкнутых контактах котел работает в режиме отопления, а при замкнутых — в режиме ГВС.

Принцип работы микропереключателя на трехходовом клапане схожий с принципом работы герконового реле. Контакты микропереключателя замыкаются во время передвижения штока трехходового клапана при протоке воды в режиме ГВС (подробнее читайте в журнале «Пресс-клуб», декабрь, 2005). В некоторых котлах в качестве датчика протока используется турбинка, к которой подключен датчик Холла.

С помощью такого датчика можно не только определять наличие протока, но и его величину, т.е. скорость вращения турбинки. Этот датчик работает так: при вращении магнита, находящегося в турбинке, возникает вращающееся магнитное поле. Датчик Холла под воздействием этого поля генерирует электрические импульсы, которые считываются электронной платой котла. По частоте этих импульсов вычисляется скорость протока воды.

Подробно рассмотрев принципы работы основных видов датчиков в отопительном оборудовании, мы раскрыли тему, которая позволяет связать воедино общую схему работы котла, понять взаимодействие его узлов и алгоритмы их работы

NTC термистор характеристики

А Вы знаете, что такое NTC термистор и какие у него характеристики?

NTC термистор

Что такое термисторы NTC?

Термистор, встроенный в зонд из нержавеющей стали, представляет собой «отрицательный температурный коэффициент». Термисторы NTC — это резисторы с отрицательным температурным коэффициентом, что означает, что сопротивление уменьшается с повышением температуры. Они в основном используются как резистивные температурные датчики и токоограничивающие устройства. Коэффициент температурной чувствительности примерно в пять раз больше, чем у кремниевых температурных датчиков (силисторы) и примерно в десять раз больше, чем у датчиков температуры сопротивления (RTD). Датчики NTC обычно используются в диапазоне от -55 ° C до 200 ° C.

NTC термистор

Нелинейность связи между сопротивлением и температурой, проявляемая резисторами NTC, представляла собой большую проблему при использовании аналоговых схем для точного измерения температуры, но быстрое развитие цифровых схем позволило решить эту задачу, позволяющую вычислять точные значения путем интерполяции таблиц поиска или путем решения уравнений которые приближаются к типичной кривой NTC.

Определение термистора NTC

Термистор NTC представляет собой термочувствительный резистор, сопротивление которого демонстрирует большое, точное и прогнозируемое снижение по мере того, как температура ядра резистора увеличивается в диапазоне рабочих температур.

Характеристики термисторов NTC

В отличие от RTD (температурные детекторы сопротивления), изготовленные из металлов, термисторы NTC обычно изготавливаются из керамики или полимеров. Различные используемые материалы приводят к различным температурным откликам, а также к другим характеристикам.

Хотя большинство термисторов NTC обычно подходят для использования в температурном диапазоне от -55 ° C до 200 ° C, где они дают наиболее точные показания, существуют специальные семейства термисторов NTC, которые могут использоваться при температурах, приближающихся к абсолютному нулю (-273,15 ° C), а также те, которые специально предназначены для использования выше 150 ° C.

Температурная чувствительность датчика NTC выражается как «процентное изменение на градус C». В зависимости от используемых материалов и особенностей производственного процесса типичные значения чувствительности к температуре колеблются от -3% до -6% на ° С.

Характеристическая кривая NTC термистора

Характеристическая кривая NTC

Как видно из рисунка, термисторы NTC имеют гораздо более крутой наклон сопротивления-температуры по сравнению с RTD платинового сплава, что приводит к лучшей температурной чувствительности. Тем не менее, RTD остаются наиболее точными датчиками, точность которых составляет ± 0,5% от измеренной температуры, и они полезны в температурном диапазоне от -200 ° C до 800 ° C, что намного шире, чем у датчиков температуры NTC.

Сравнение с другими датчиками температуры

По сравнению с RTD, NTC имеют меньший размер, более быстрый отклик, большую устойчивость к ударам и вибрации и имеют более низкую себестоимость. Они немного менее точны, чем RTD. По сравнению с термопарами точность, полученная от обоих, аналогична; однако термопары выдерживают очень высокие температуры (порядка 600 ° C) и используются вместо термисторов NTC, где их иногда называют пирометрами. Тем не менее, термисторы NTC обеспечивают большую чувствительность, стабильность и точность, чем термопары при более низких температурах, и используются с меньшими затратами электроэнергии и, следовательно, имеют более низкие общие затраты. Стоимость дополнительно снижается из-за отсутствия необходимости в схемах формирования сигнала (усилители, переводчики уровня и т. д.), Которые часто необходимы при работе с RTD и всегда необходимы для термопар.

Эффект самонагрева

Эффект самонагрева — это явление, которое происходит, когда ток протекает через термистор NTC. Поскольку термистор в основном является резистором, он рассеивает энергию в виде тепла, когда через него протекает ток. Это тепло генерируется в сердечнике термистора и влияет на точность измерений. Степень, в которой это происходит, зависит от количества протекающего тока, окружающей среды (будь то жидкость или газ, есть ли какой-либо поток над датчиком NTC и т. д.), Температурный коэффициент термистора, общее количество термистора области и т. д. Тот факт, что сопротивление датчика NTC и, следовательно, ток протекания через него, зависит от окружающей среды и часто используется в резервуарах для хранения жидкости.

Теплоемкость

Теплоемкость представляет собой количество тепла, необходимое для повышения температуры термистора на 1 ° C и обычно выражается в мДж / ° C. Знание точной теплоемкости имеет большое значение при использовании датчика термистора NTC в качестве ограничителя пускового тока, поскольку он определяет скорость отклика датчика температуры NTC.

Выбор и расчет кривой

Тщательный процесс отбора должен учитывать константу рассеяния термистора, постоянную времени термической обработки, значение сопротивления, кривую сопротивления-сопротивления и допуски, чтобы учесть в наиболее важных факторах.
Поскольку зависимость между сопротивлением и температурой (кривая R-T) сильно нелинейна, в практических схемах системы должны использоваться определенные приближения.

Приближение первого порядка

Одним приближением и простейшим в использовании является приближение первого порядка, в котором говорится, что:

формула приближения первого порядка: dR = k * dT

Где k — отрицательный температурный коэффициент, ΔT — разность температур, ΔR — изменение сопротивления, возникающее в результате изменения температуры. Это приближение первого порядка справедливо только для очень узкого температурного диапазона и может быть использовано только для таких температур, где k почти постоянна во всем диапазоне температур.

Другое уравнение дает удовлетворительные результаты с точностью ± 1 ° C в диапазоне от 0 ° C до + 100 ° C. Он зависит от единственной константы материала β, которая может быть получена путем измерений. Уравнение можно записать в виде:

Бета-уравнение: R (T) = R (T0) * exp (бета * (1 / T-1 / T0))

Где R (T) — сопротивление при температуре T в Кельвине, R (T0) является точкой отсчета при температуре T0. Бета-формула требует двухточечной калибровки и обычно не более чем ± 5 ° C по всему полезному диапазону термистора NTC.

Наилучшим приближением, известным на сегодняшний день, является формула Штейнхарта-Харта, опубликованная в 1968 году:

Уравнение Штейнхарта для точного приближения: 1 / T = A + B * (ln (R)) + C * (ln (R)) ^ 3

Где ln R — естественный логарифм сопротивления при температуре T в Кельвине, а A, B и C — коэффициенты, полученные из экспериментальных измерений. Эти коэффициенты обычно публикуются поставщиками термисторов в составе таблицы данных. Формула Штейнхарта-Харта, как правило, составляет около ± 0,15 ° С в диапазоне от -50 ° С до + 150 ° С, что является большим для большинства применений. Если требуется высокая точность, диапазон температур должен быть уменьшен, а точность лучше, чем ± 0,01 ° C в диапазоне от 0 ° C до + 100 ° C.

Выбор правильного приближения

Выбор формулы, используемой для получения температуры из измерения сопротивления, должен основываться на доступной вычислительной мощности, а также на фактических требованиях допуска. В некоторых приложениях приближение первого порядка более чем достаточно, в то время как в других случаях даже уравнение Штейнхарта-Харта удовлетворяет требованиям, а термистор должен быть откалиброван по пунктам, делая большое количество измерений и создавая таблицу поиска.

Конструкция и свойства термисторов NTC

Материалами, обычно используемыми при изготовлении NTC-резисторов, являются платина, никель, кобальт, железо и оксиды кремния, используемые в виде чистых элементов или керамики и полимеров. Термисторы NTC можно разделить на три группы, в зависимости от используемого производственного процесса.

Терморезисторы

Форма бисера или шарика. Эти термисторы NTC изготовлены из свинцовых проводов из платинового сплава, непосредственно спеченных в керамический корпус. Они обычно обеспечивают быстрое время отклика, лучшую стабильность и позволяют работать при более высоких температурах, чем дисковые и чип-датчики NTC, однако они более хрупкие. Обычно они запечатывают их в стекле, чтобы защитить их от механических повреждений во время сборки и улучшить их стабильность измерений. Типичные размеры колеблются от 0,075 до 5 мм в диаметре.

Терморезисторы

Диск и чип-термисторы

Термистор в виде диска. Терморезисторы NTC имеют металлизированные поверхностные контакты. Они больше и, как результат, имеют более медленное время реакции, чем резисторы NTC типа шариков. Однако из-за их размера они имеют более высокую константу диссипации (мощность, необходимая для повышения их температуры на 1 ° C), и поскольку мощность, рассеиваемая термистором, пропорциональна квадрату тока, они могут обрабатывать более высокие токи намного лучше, чем шариковый тип термисторов. Термисторы с типом диска производятся путем прессования смеси оксидных порошков в круглую матрицу, которые затем спекаются при высоких температурах. Чипы обычно изготавливают методом литья под давлением, где суспензию материала распределяют в виде толстой пленки, сушат и разрезают в форму. Типичные размеры колеблются от 0,25 до 25 мм в диаметре.

Терморезисторы NTC с инкапсулированным покрытием

Стекловолокно с термистором NTC

Это датчики температуры NTC, запечатанные в воздухонепроницаемом стеклянном пузыре. Они предназначены для использования при температурах выше 150 ° C или для монтажа на печатной плате, где требуется прочность. Инкапсуляция термистора в стекле повышает стабильность датчика, а также защиту датчика от окружающей среды. Они изготавливаются герметично уплотняющими резисторами типа NTC в стеклянный контейнер. Типичные размеры колеблются от 0,4 до 10 мм в диаметре.

Терморезисторы NTC с инкапсулированным покрытием

Типичные области применения

Термисторы NTC используются в широком спектре применений. Они используются для измерения температуры, температуры управления и температурной компенсации. Они также могут использоваться для обнаружения отсутствия или наличия жидкости, в качестве устройств ограничения тока в цепях питания, мониторинга температуры в автомобильных агрегатах и многих других. Датчики NTC можно разделить на три группы, в зависимости от электрической характеристики, используемой в агрегатах и устройствах.

Типичные области применения

Характеристика сопротивления-температуры

Приложения, основанные на характеристике сопротивления-времени, включают измерение температуры, контроль и компенсацию. К ним также относятся ситуации, в которых используется термистор NTC, так что температура датчика температуры NTC связана с некоторыми другими физическими явлениями. Эта группа агрегатов требует, чтобы термистор работал в условиях нулевой мощности, что означает, что ток проходящий через него поддерживается как можно на более низком уровне, чтобы избежать нагрева зонда.

Текущая временная характеристика

Устройствами, основанными на характеристике текущего времени, являются: временная задержка, ограничение пускового тока, подавление перенапряжений и многое другое. Эти характеристики связаны с теплоемкостью и постоянной диссипации используемого термистора NTC. Схема обычно полагается на термистор NTC, нагреваясь из-за проходящего через него тока. В какой-то момент это вызовет какое-то изменение в схеме, в зависимости от устройства, в котором оно используется.

Характеристика напряжения

Устройства, основанные на характеристике напряжения и тока термистора, обычно включают изменения условий окружающей среды или изменения схемы, которые приводят к изменениям рабочей точки на заданной кривой в цепи. В зависимости от применения это может использоваться для ограничения тока, температурной компенсации или измерения температуры.

NTS термисторный символ

Следующий символ используется для термистора с отрицательным температурным коэффициентом в соответствии со стандартом IEC.

NTS термисторный символ

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector