Боятся ли светодиодные лампы перепадов напряжения

Содержание

Защита светодиодных ламп от перегорания: схемы, причины, продлеваем жизнь

На рынке светодиодных ламп и светильников представлен широкий спектр продукции в разных ценовых диапазонах. Основное отличие приборов низкого и среднего ценовых сегментов заключается в большей степени не в используемых светодиодах, а в источниках питания для них.

Светодиоды работают от постоянного тока, а не от переменного, который протекает в бытовой электрической сети, а от качества преобразователя в большей степени зависит надежность ламп и режим работы светодиодов. В этой статье мы рассмотрим, как защитить светодиодные лампы и продлить жизнь дешевым моделям.

Всё описанное ниже справедливо и для светильников и для ламп.

Два основных вида источников питания для светодиодов: гасящий конденсатор и импульсный драйвер

В самой дешевой светодиодной продукции используется гасящий конденсатор в качестве источника питания. Принцип его работы основан на реактивном сопротивлении конденсатора. Отметим простыми словами, что в цепях переменного тока конденсатор представляет собой аналог резистора. Отсюда следуют такие же недостатки, что и при использовании резистора:

1. Отсутствие стабилизации по напряжению или току.

2. Соответственно при росте входного напряжения увеличивается и напряжение на светодиодах, соответственно растёт и ток.

Эти недостатки связаны между собой. В отечественных электросетях, особенно в отдаленных районах, дачных поселках, деревнях и частном секторе часто наблюдаются скачки напряжения. Если напряжение проседает ниже 220В это не так страшно для ламп собранных по этой схеме, ток через светодиоды будет ниже, соответственно они прослужат дольше.

Схема светодиодной лампы с гасящим конденсатором:

А вот если напряжение будет выше номинального, например 240В, то светодиодная лампы быстро сгорит, по причине того, что и ток через светодиоды возрастет. Также очень опасны и импульсные скачки напряжения в сети, они возникают вследствие коммутации мощных электроприборов: вы наверняка замечали, что при включении холодильника или пылесоса, например, свет «моргает» – это и есть проявление этих импульсных скачков. Также они возникают во время грозы или аварийных ситуациях на ЛЭП или электростанции. Выглядит импульс следующим образом:

Импульсные драйвера для светодиодов

В светодиодных лампочках среднего и высокого ценового сегмента используются драйвера импульсного типа со стабилизацией тока.

Светодиоды работают от стабильного тока, напряжение для них не является основополагающей величиной. Поэтому драйвером называют источник тока. Его основными характеристиками является сила выходного тока и мощность.

Стабилизация тока реализуется с помощью цепей обратной связи, если не вдаваться в подробности существует два основных типа драйверов, которые используются в светодиодных лампочках и светильниках:

1. Бестрансформаторный, соответственно без гальванической развязки.

2. Трансформаторный – с гальванической развязкой.

Гальваническая развязка – это система, которая обеспечивает отсутствие прямого электрического контакта между первичной цепью питания и вторичной цепью питания. Она реализуется с помощью явлений электромагнитной индукции, иначе говоря, трансформаторами, а также с помощью оптоэлектронных устройств. В блоках питания для гальванической развязки используется именно трансформатор.

Типовая схема бестрансформаторного 220В драйвера для светодиодов изображена на рисунке ниже.

Обычно они построены на интегральной микросхеме со встроенными силовым транзистором. Она может быть в разных корпусах, например TO92, он используется также и в качестве корпуса для маломощных транзисторов и других ИМС, например линейных интегральных стабилизаторов, типа L7805. Встречаютcя и экземпляры в «восьминогих» корпусах для поверхностного монтажа, типа SOIC8 и другие.

Для таких драйверов повышения или понижения напряжения в питающей сети не страшны. Но крайне нежелательны импульсные перенапряжения – они могут вывести из строя диодный мост, если драйвер бестрансформаторный, то 220В попадут на выход микросхемы, или же мост пробьёт на КЗ по переменному току.

В первом случае высокое напряжение «убьёт светодиоды», вернее один из них, как это обычно происходит. Дело в том, что светодиоды в лампах, прожекторах и светильников обычно соединены последовательно, в результате сгорания одного светодиода цепь разрывается, остальные остаются целыми и невредимыми.

Во втором – выгорит предохранитель или дорожка печатной платы.

Типовая схема драйвера для светодиодов с трансформатором изображена ниже. Они устанавливаются в дорогую и качественную продукцию.

Защита светодиодных ламп: схемы и способы

Есть разные способы защиты электроприборов, все они справедливы для защиты светодиодных светильников, среди них:

1. Использование стабилизатора напряжения – это самый дорогой способ и для защиты люстры его использовать крайне неудобно. Однако можно запитать весь дом от сетевого стабилизатора напряжения, они бывают различных типов – релейные, электромеханические (сервоприводные), релейные, электронные. Обзор их преимуществ и недостатков может стать темой для отдельной статьи, пишите в комментарии, если вам интересна эта тема.

2. Использование варисторов – это прибор ограничивающие всплески напряжения, может использоваться как для защиты конкретного светильника или другого прибора, так и на вводе в дом.

3. Использование дополнительного гасящего конденсатора последовательном включении. Таким образом, ограничивается ток лампы, конденсатор рассчитывают исходя из мощности лампы. Это скорее не защита, а понижение мощности лампы, в результате при повышенных значениях напряжения в электросети срок её службы не сократится.

Варистор для защиты ламп и другой бытовой техники

Варистор – это прибор ограничивающий напряжение, его действие подобно газовому разряднику. Это полупроводниковый прибор с переменным сопротивлением. Когда на его выводах напряжение достигает уровня напряжения срабатывания варистора, его сопротивление снижается с тысяч мегаом до десятков Ом и через него начинает протекать ток. Его подключают в цепь параллельно. Таким образом, происходит защита электрооборудования.

Внешний вид варисторов

Un — классификационное напряжение. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА;

Um – максимально допустимое действующее переменное напряжение (среднеквадратичное);

Um= — максимально допустимое постоянное напряжение;

Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;

W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.

Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;

Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда варистор пропускает через себя большой ток, она падает до нуля.

Для увеличения рассеваемой мощности производители увеличивают размер самого варистора, а также делают его выводы более массивными. Они выступают в качестве радиатора для отвода выделенной тепловой энергии.

Для защиты электроприборов в отечественных электросетях переменным напряжением в 220В подбирают варистор больший, чем амплитудное значение напряжения, а примерно равно 310В. То есть можно устанавливать варистор с классификационным напряжением около 380-430В.

Например, подойдет TVR 20 431. Если вы установите варистор с меньшим напряжением, то возможны его «ложные» срабатывания при незначительных превышениях напряжения питающей сети, а если установите с большим – защита не будет эффективной.

Читайте также:  Запуск лампы дневного света без дросселя

Как уже было сказано, варисторы могут устанавливаться непосредственно на вводе в дом, таким образом, вы защитите все электроприборы в доме. Для этого промышленностью выпускаются модульные варисторы, так называемые УЗИП.

Вот схема его подключения для трёхфазной сети, для однофазной – аналогично.

Для защиты одного светильника или лампочки используют такую схему включения, она приведена на примере самодельного светодиодного светильника, но при использовании готового светильника или лампы варистор устанавливается также – параллельно по цепи 220В.

Вы его можете установить как в корпусе самого осветительного прибора, так и на питающих проводах снаружи. Если он подключается к розетке – варистор можно расположить в розетке. Варистор можно заменить супрессором.

В этом видео ролике автор интересно рассказывает о таком способе защиты.

Готовые решения

Устройство защиты от импульсных перенапряжений для светодиодных светильников – от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В зависимости от конструкции устанавливается в параллель или последовательно.

На рынке имеются устройства с разными характеристиками – напряжением срабатывания и пиковый ток.

Устройство защиты светодиодов сохраняет лампы при импульсах напряжения. Подключается параллельно цепи освещения после выключателя. Также предотвращает самопроизвольное мигание светодиодных лампочек при использовании выключателей с подсветкой.

Суть работы такого устройства заключается в том, что внутри установлен конденсатор. Ток подсветки выключателей течет через него, также он сглаживает всплески напряжений.

Подобное или аналогичное устройство от фирмы Гранит, модель БЗ-300-Л. Индекс «Л» в конце говорит о том, что это блок защиты для светодиодных и энергосберегающих ламп (клл).

Внутри расположено три детали, одну из которых мы рассмотрели выше:

Вот принципиальная схема. Вы можете её повторить.

Заключение

Полностью исключить вероятность перегорания светодиодных ламп и светильников невозможно. Однако вы можете продлить лампочкам жизнь, минимизировав влияние скачков напряжение. Сделать это можно либо своими руками, либо купив блок защиты светодиодных ламп заводского исполнения.

Поделитесь этой статьей с друзьями:

Вступайте в наши группы в социальных сетях:

Все о блоках защиты для светодиодных и энергосберегающих ламп

Рано или поздно любые источники света, применяемые в приборах освещения, перегорают. Причин этому множество. В лампочках со спиралью происходит разрыв последней, а в лэд-элементах – расслоение и выход из строя полупроводников кристаллов.

Единственный способ максимально продлить срок службы светодиодных и энергосберегающих ламп – это установить в сеть специальный блок защиты. Рассмотрим, какие основные причины перегорания ламп существуют, каким наилучшим способ защитить их от резких изменений параметров бытовой сети, каковы основные технические данные блоков защиты, что нужно знать при их выборе, как правильно их подключить, установить и подобрать место монтажа.

Почему лампы перегорают

В отличие от обычных ламп накаливания у галогенных принцип работы позволяет частично восстанавливать постоянно утончающуюся в ходе свечения спираль. Это несколько продлевает срок ее действия. Светодиодный кристалл служит на порядок дольше, но он также не застрахован от перегорания. Помимо естественного износа спирали или полупроводниковой матрицы, существует целый ряд специфических причин, значительно снижающих их долговечность. Это такие свойства бытовой сети 220 В, как:

  1. Скачки напряжения.
  2. Фатальные скачки.
  3. Наведенная пульсация.
  4. Паразитарная пульсация.

Рассмотрим их особенности более детально.

Скачки напряжения

Изменение значения напряжение – достаточно характерное явление для отечественной бытовой сети. Любая энергосберегающая светодиодная лампа, оснащенная элементарным гасящим драйвером, имеет защиту от эффекта повышения номинала. С другой стороны, от его падения лэд-элемент не может быть огражден таким блоком. Потребуется также установка высоковольтного конденсатора.

Фатальные скачки напряжения

К этому виду причин поломок светодиодных и энергосберегающих ламп относятся сверхвысокое повышение силы тока и напряжения в сети. Это происходит при разряде молнии в непосредственной близости с линией электропередач. Как правило, стандартные блоки защиты не успевают блокировать воздействие такой мощности, и электроника сгорает моментально. В этом случае происходит эффект мигающих лэд-светильников в отключенном состоянии.

Наведенная пульсация

При близком расположении двух проводников, один из которых ведет к мощному потребителю, во втором, ведущем к светодиодной лампе, возникает достаточная для инициации свечения сила тока. Проблема в том, что такое дополнительно включение/выключение (равное частоте переменного тока, то есть 50 раз в секунду!) очень быстро приведет энергосберегающее устройство в негодность.

Паразитарная пульсация

Эффект паразитной пульсации возникает при использовании выключателей с лэд-подсветкой. Через ее элементы проходит ток, достаточной силы, чтобы возбудить кристаллы светодиодной энергосберегающей лампы. В результате она мигает и, естественно, постепенно расходует ресурс полупроводниковой матрицы.

Как защитить лампы лед от скачков напряжения в электросети

Для устранения мерцания, основной причины уменьшения срока действия лэд-элемента, потребуется установка блока защиты. Это особый прибор, внутри которого расположен элемент с электрическим сопротивлением, несколько меньшим, чем в светодиодной энергосберегающей лампе. Возникающие паразитная и наведенные пульсации просто проходят через него, минуя светильник. Чтобы модуль начал работать, его необходимо подключить к входным контактам самого драйвера питания.

Почему встроенные блоки питания не защищают

Стандартные блоки питания, устанавливаемые в любой энергосберегающей светодиодной лампе, это гасящие драйвера. Их основное назначение – защитить кристалл от скачка напряжения. Однако они не могут предотвратить воздействия на нее микротоков, достаточных для мерцания. Полупроводниковый кристалл имеет меньшее сопротивление, и потому подвергается действию паразитной и наведенной пульсации. Также они не способны предохранить от падения номинала в сети, что также вредно для лэд-элементов. Поэтому требуется установка отдельно блока защиты.

Блоки защиты ламп: подключение и применение, работа и устройство

Блок защиты от импульсных перенапряжений предохраняет энергосберегающие светодиодные лампы от скачков в сети до 20 кВ. В зависимости от конструкционных особенностей он монтируется в схему параллельно или последовательно.

Технические данные

Устройства для защиты от перепадов сети для светодиодов и энергосберегающих ламп характеризуются тремя основными параметрами:

  1. Суммарная мощность потребляемых светильников.
  2. Входное напряжение.
  3. Номинал на выходе.

Важно! Дополнительными характеристиками, влияющими на функциональность блока защиты, являются диапазон рабочих температур и степень защиты от атмосферной влажности.

Особенности выбора

Первым необходимым условием выбора блока защиты для светодиодных и иных энергосберегающих ламп является правильный расчет суммарной мощности потребления. При этом к расчетной мощности для страховки лучше добавить еще 20-30% от полученного значения. Если устройство приобретается не только для лэд-элементов, но и для лампочек накаливания или галогенок, то желательно, чтобы оно было оснащено системой плавного повышения напряжения.

Правила и способы подключения

Блок защиты для одной или нескольких светодиодных или других энергосберегающих ламп устанавливается в самом начале схемы (после выключателя) в соответствии с конструкцией (последовательно или параллельно).

Важно! Если в схеме есть выключатель с подсветкой, потребуется установить дополнительный резистор (около 50 кОм и 1Вт) – параллельно блоку защиты. Последний в неактивном состоянии разрывает цепь, и потому лед-элемент работать не будет.

Места установки защиты

Если блок защиты для светодиодных и энергосберегающих ламп небольшой (до 300 Вт), его можно установить в распределительном модуле для проводки. Однако необходимо иметь ввиду, что он должен хорошо охлаждаться и быть доступным в случае необходимости ремонта или замены.

Основные выводы

Блок защиты устраняет перепады напряжения в сети, обеспечивая длительный срок службы галогенным и прочим энергосберегающим и светодиодным лампам. Чаще всего причиной перегорания лампочек являются:

  1. Скачки напряжения.
  2. Фатальное повышение силы тока.
  3. Наведенная пульсация.
  4. Паразитарная пульсация.

Для надежной защиты энергосберегающих ламп и светодиодных светильников необходимо в начало электросхемы установить параллельно или последовательно (в зависимости от конструкции) специальный блок. При его выборе нужно учесть суммарную мощность электроприборов, а также напряжение на входе и выходе и условия будущей эксплуатации.

Светодиодные лампы VS Компактные люминисцентные.

Светодиодные лампы VS Компактные люминисцентные.

Светодиодные лампы набирают все большую популярность. Многие уже используют их, кто-то пока не решается, но слышали о них все. Все знают что они гораздо экономичнее ламп накаливания, но как на счет компактных люминисцентных ламп? есть ли смысл менять КЛЛ на светодиодные лампы? Мы попытались ответить на этот вопрос.

Читайте также:  Проветривание квартиры без открытия окон

Сначала стоит понять, что представляют собой светодиодные лампы и КЛЛ.

Компактная люминесцентная лампа (КЛЛ) – это, по сути, люминесцентная лампа небольшого (компактного) размера. Любая люминесцентная лампа – состоит из стеклянной герметичной колбы трубкообразной формы, наполненной инертным газом и парами ртути. Электрический разряд в парах ртути создает ультрафиолетовое излучение. На стенки колбы, с внутренней стороны, нанесено специальное покрытие – люминофор, состоящий из смеси фосфора с другими элементами. Люминофор преобразовывает ультрафиолетовое излучение в видимый свет. Компактные люминесцентные лампы оснащены встроенными пускорегулирующими аппаратами. В зависимости от предназначения КЛЛ могут иметь цоколи различных видов: E27, E14, GU10, GU5.3 и др. Форма КЛЛ также может различаться (линейные, спиралевидные). Существуют КЛЛ в точности повторяющие форму лампы накаливания. Здесь есть небольшая хитрость. По сути, такая лампа является обычной компактной люминесцентной лампой, спиралевидная колба которой скрыта матовым плафоном. Именно этот плафон и повторяет форму лампы накаливания.

Чтобы понять, какой мощности КЛЛ нужно использовать для замены лампы накаливания, мощность лампы накаливания делят на 5, и округляют в большую сторону. Например, чтобы заменить лампу накаливания 60Вт, нужно 60:5. Получится 12Вт. Но в продаже имеются компактные люминесцентные лампы на 11Вт и на 13Вт. В данном случае лучше использовать 13-ваттную энергосберегающую лампу.

Светодиодные лампы (еще их называют LED-лампы) представляют собой довольно сложные электронные устройства, в которых кроме самих светодиодов, объединенных в светодиодные матрицы, входят дополнительные компоненты. Именно они обеспечивают работу светодиодов. К таким компонентам относятся различные электронные устройства (источники питания, устройства управления), оптические линзы (направляющие или рассеивающие свет, смешивающие цвета) и устройства для отвода тепла (радиаторы, вентиляционные отверстия). Для определения примерной мощности светодиодных ламп, при замене ламп накаливания, мощность лампы накаливания делят на 12. Т.е. лампу накаливания в 60Вт можно заменять светодиодной лампой 5Вт.

Энергосбережение.

И светодиодные лампы, и компактные люминесцентные являются энергосберегающими. А потому, когда ставится вопрос о выборе лучшего варианта, в первую очередь рассматривают их энерго-эффективность. Как было сказано выше, по количеству света, светодиодная лампа мощностью 5Вт может заменять лампу накаливания мощностью 60Вт. При этом, потребляя в 12 раз меньше электроэнергии! Т.е. если ваша лампа будет гореть хотя бы 3 часа в сутки, то за год, лампа накаливания «съест» почти 66 киловатт, тогда как светодиодная лампа израсходует всего 5,5. Разница колоссальная. Впрочем, сопоставление с компактной люминесцентной лампой выглядит не так впечатляюще. 60-и ваттную лампу накаливания можно заменить 13 ваттной энергосберегающей. Но разница более чем в два раза тоже существенна.

1:0 в пользу светодиодной лампы.

Срок службы.

По заявлению большинства производителей светодиодных ламп, их срок службы составит 4-5 лет. Минимум, при условии, что данная лампа будет гореть круглыми сутками, без выходных и перерывов. Энергосберегающая компактная люминесцентная лампа имеет заявленный срок службы раз в 10-12 выше, чем у лампы накаливания. Если в среднем, лампа накаливания служит около полугода, то получаются те же пять лет. Но тут есть ряд нюансов.

1. Сложно представить ситуацию, когда лампа горит сутками напролет, пять лет подряд. А в обычных условиях светодиодных ламп хватит лет на 10. По крайне мере хватит светодиодной матрицы.

2. Срок службы КЛЛ впечатляет именно в сравнении с лампой накаливания. Т.е. берется средняя лампа накаливания, средняя продолжительность работы этой лампы при средних условиях. И на этой базе выдвигается тезис, что КЛЛ будет В СРЕДНЕМ служить в 10-12 раз дольше. Но, если взять время непрерывного горения, указанное на упаковке, то видно, что оно составляет самое большее 8000 часов (величина зависит от ценовой категории, в среднем ценовом сегменте обычно указан срок 4000-5000 часов). Т.е. минимальный срок службы КЛЛ – не более года, а точнее: 8000 : 24 : 365 = 0,91года. (а при 4000-5000 тысячах – в два раза меньше). Получается, что в идеальных условиях (об этом чуть ниже) средней КЛЛ хватит не более чем года на 4. А минимальный срок службы КЛЛ составляет менее года , тогда как срок службы для светодиодной лампы минимум – это 4-5 лет .

2:0 в пользу светодиодной лампы.

Условия эксплуатации.

На потребительские свойства любого оборудования существенное влияние оказывают условия его эксплуатации. И лампы, любые лампы, здесь не являются исключением. В зависимости от того, как с ними обращаться, меняется и срок их службы. Впрочем, меняется в разной пропорции, в зависимости от их потребительских свойств. Так, частые перепады напряжения легко могут вывести из строя компактную люминесцентную лампу, а вот светодиодной лампе большого вреда не нанесут. То же можно сказать и о частых включениях/выключениях. КЛЛ очень чутко на это реагируют. И когда речь идет о сроке службы, этот фактор следует обязательно учитывать. Если вы планируете поставить КЛЛ там, где освещение будет включаться часто, хоть и ненадолго – будьте готовы к тому, что лампа не протянет и года. Светодиодные лампы не чувствительны к циклической подаче питания. Частые включения/выключения никак не скажутся на их сроке службы и качестве работы. И вообще, светодиодные лампы гораздо прочнее своих старших сестер: их сложнее сломать или испортить, они не боятся холода или жары, легко выдерживают воздействие вибрации. А потому хорошо подходят для эксплуатации в сложных условиях.

3:0 в пользу светодиодной лампы.

Качество света.

А как светодиодные лампы и КЛЛ выполняют свою непосредственную функцию? Компактные люминесцентные лампы унаследовали от линейных люминесцентных ламп, большинство недостатков. Их свет не очень приятен для глаз, т.к. спектр его излучения гораздо беднее, чем спектр цветов, излучаемых лампой накаливания. Потому, цветовое восприятие предметов, освещенных любыми люминесцентными лампами, выглядит несколько искаженным.

Индекс цветопередачи КЛЛ составляет 80-85 единиц, при норме для жилых помещений 70-90. Со временем люминофор, нанесенный на стенки лампы, теряет свои свойства, а потому меняется уровень цветопередачи. Но изменения незначительны, а потому их можно в расчет не принимать.

Хуже другое: частая «болезнь» люминесцентных ламп, в том числе и компактных – легкое, едва уловимое мерцание, которое негативно влияет на зрение.

Индекс цветопередачи светодиодных ламп составляет те же 80-85 единиц, что и у КЛЛ. В этом пункте оба вида ламп проигрывают лампам накаливания. Но светодиодные лампы не подвержены «болезням» люминесцентных, потому не будет никакого мерцания и пульсации.

4:0 в пользу светодиодной лампы.

Безопасность.

Не битая, исправная лампа, будь то светодиодная или люминесцентная, никакой опасности не представляет. Но что делать, если лампа выработала свой ресурс? Светодиодную лампу можно утилизировать как обычный бытовой отход. Т.е. положить в мусорное ведро и забыть о ней. А вот компактную люминесцентную лампу придется везти в пункт приема и утилизации люминесцентных ламп. Ведь в колбе такой лампы находятся пары ртути, чрезвычайно ядовитые для человека. А если лампа разобьется?

5:0 в пользу светодиодной лампы.

По всем пяти пунктам светодиодные лампы оказались лучше компактных люминесцентных ламп. Единственный их минус – довольно высокая цена. Но, в последнее время намечена устойчивая тенденция к ее снижению. По мере того, как светодиодные лампы набирают популярность, они дешевеют. Уже сегодня светодиодные лампы можно купить по цене весьма близкой к стоимости КЛЛ. Учитывая высокие потребительские свойства светодиодных ламп – сделка более чем выгодная.

8 важных моментов при выборе светодиодных ламп для дома

Диапазон напряжения

Обычно напряжение в сети должно быть 230 вольт, допустимо отклонение в пределах 210-250 вольт. Однако скачки бывают более существенными. Во время резкого снижения напряжения лампы накаливания и светодиодные лампы с дешевыми комплектующими (простым RC-драйвером) светят тускло, свет может мерцать. Светодиодные источники света с IC-драйвером не мигают и не теряют яркость даже при существенных перепадах напряжения в сети.

Совет: скачки напряжения в сети не будут заметны, если выбрать лампы с наибольшим диапазоном напряжения или маркировкой драйвера IC.

Пульсация

Коэффициент пульсации — это степень колебания при изменении светового потока. Эффект мерцания есть у всех искусственных источников света, но при превышении допустимого значения этого показателя, могут уставать глаза, появляться головные боли и другие признаки недомогания.

Совет: для наибольшего комфорта коэффициент пульсации должен быть менее 10%. Максимально допустимый уровень, начиная с которого глаза будут быстро уставать, составляет 35%. Степень мерцания нужно проверить перед покупкой. Для этого можно двигать камеру мобильного телефона перед горящей лампой. Если на экране видны полосы, уровень пульсации недопустимо большой для дома.

Угол рассеивания света

При узком угле рассеивания свет распространяется на небольшой участок помещения. Светильники с углом 60° подходят для гардеробных, в подсветке на кухне. Широкий угол обзора (90-360°) дает рассеянный поток света, применяют в комнатах от 15 квадратных метров в потолочных светильниках. Средние значения подходят для ночников, торшеров, люстр с несколькими рожками.

Совет: при покупке потолочных светильников стоит выбрать модели с поворотной опцией. Благодаря этому можно менять направление подсветки.

Мощность и световой поток

Степень яркости определяет световой поток. Приблизительные нормы освещенности приведены в рекомендациях государственных санитарных норм и правил:

  • 150 люмен на квадратный метр для спальни и кухни,
  • 200 люмен на квадратный метр для детской,
  • 50 люмен на квадратный метр для туалета и ванной.
Читайте также:  Нанесение грифельной краски на стену

Таблицы соответствия мощности источника света и светового потока помогают рассчитать количество источников света:

  • лампе мощностью 5 Вт соответствует световой поток 250 люмен, если площадь совмещенного туалета и ванны около 5 метров, одной светодиодной лампы мощностью 5 Вт должно быть достаточно для его освещения;
  • лампе мощностью 14 Вт соответствует световой поток 1300 люмен, для спальни площадью 15 квадратных метров должно быть достаточно двух ламп мощностью 14 Вт.

Совет: часто реальная мощность меньше, чем заявленная производителем на упаковке. Для яркого света нужно учитывать световой поток, угол рассеивания, диапазон напряжения.

Поддержка регулировки яркости

Диммеры помогают регулировать яркость света. Их возможно использовать только со специальными лампами, которые поддерживают эту особенность.

Совет: диммеры, которые использовались с лампами накаливания, не всегда подходят к светодиодным лампам. Об этом следует помнить и выбирать такие лампы, которые поддерживают регулировку.

Поддержка выключателя с подсветкой

Такие выключатели удобны в темноте, в них встроены индикаторы и небольшие светодиодные лампочки. В случае неправильного подключения или несовместимого оборудования при выключенном свете светодиодные лампы начинают мигать или мерцать.

Совет: при выборе ламп для выключателей с подсветкой ищите модели, совместимые с таким выключателем, иначе будет необходимо установить в светильник дополнительный резистор.

Температура цвета и цветопередача

Температуру цвета измеряют в Кельвинах, чем она выше, тем более холодным будет свет. Для дома подойдут модели со свечением в диапазоне от 2700 до 3000 Кельвинов, который дает желтый оттенок света. В описании на коробке такого температурного промежутка обычно указано “теплый белый” или “мягкий белый”.

Совет: в магазине нужно поднести руку к зажженной лампе. Если цвет кожи имеет серый оттенок, индекс цветопередачи низкий, покупать ее не рекомендуется.

Срок службы и гарантия

Со временем качество свечения любых светодиодов уменьшается. Производители могут указывать для своих изделий срок службы до 15 лет или более 50 тысяч часов работы. На самом деле, обычно она служит около 3-5 лет. В этот период действует гарантия.

Совет: выбирайте лампы с гарантийным сроком не мене трех лет.

Выбор светодиодных ламп должен начинаться с расчета необходимой степени освещения для определенного помещения. В кухне, спальне, детской, ванной потребность в освещенности различаются. Правильный выбор светильников, расчет мощности, планирование размещения определяют половину успеха, но не гарантируют его. Хорошо подобранные лампы помогут создать в доме комфортную атмосферу и избежать технических проблем.

Защита светодиодных светильников от сварочного аппарата

Здравствуйте. В гараже было установлено три светодиодных светильника мощностью 40Вт. Светили себе хорошо, пока не начали работать сварочным аппаратом. Все три разом вышли из строя. Каким способом, без серьезных вложений, можно защитить светильники?

Foxyara ,
Если сварочник трансовый – то скачки сети будут большие.
Тоже самое если инверторный но некачественный или сама сеть хилая.
А блоки питания в этих светильниках видать хиленькие, им даже нормальные 220 уже на пределе.
Как можно оценить качество аппаратуры заушно?

У меня да и у соседей не вылетают, никаких проблем.

Аппарат инверторный, дешевый. Светильники тоже дешевые, китайские. Фото блока питания могу сделать.
Такого типа:

Foxyara ,
Инвертор. Цена какчество не определяет.
Светильник. По внешнему виду одежды болезнь не диагностируется.
А качество сети – .

Микитович ,
В этих светильниках драйвер убогий без стабилизаци.

Foxyara написал:
Светильники тоже дешевые, китайские.

Что то мне подсказывает, что и дорогие европейские светильники не любят скачков напряжения за порогами, гарантированными производителем.

dokar ,
Драйвер – по определению это источник постоянного стабилизированного тока. Вот только из каких элементов собран, и какой диапазон входных напряжений.
А может вааще, просто совпадение событий.
Вы по внешнему виду можете определить?
Я нет.
Может к гадалке обратиться?
Дешевый – дорогой, китайский – не китайский.
Так практически большая часть электроники – китайская, тем более у нас.
И каким боком это определяет какчество?

Вот фото драйвера

Дома буду через пару дней, тогда и разберусь с ним, что за схема.
Вы еще дайте надписи на конденсаторах, это 3 таких коричневых с белыми полосками бочонка с 2 выводами.
И еще, тестером умеете пользоваться?
Прозвонить светодиоды по одному сумеете?
Выходное напряжение (там должно быть более 100 В на выходе драйвера есть чем померять? Они справа на второй картинке, подписаны.

Микитович , Дело в том, что драйвер целый, выдает 186 вольт, сгорело 14 светодиодов (в одном из светильников). Суть вопроса в другом, как защитить в будущем от повторения такой ситуации. Читал о без трансформаторных драйверах, что они боятся импульсных скачков. Если варисторы поставить, поможет? Есть варисторы 20471 из остатков ИБП.

Foxyara написал:
Суть вопроса в другом, как защитить в будущем от повторения такой ситуации.

Выключать диодное освещение на время сварки. Купить галлогенный прожектор за двести и варить под ним. Если нет маски-хамелеона, то плюсом ещё и место сварки немного видно через стекло.

Foxyara написал:
сгорело 14 светодиодов (в одном из светильников)

Это круто. Мне тут подкинули три подобных светильника, после скачка сгорело по одной ячейке (по 4 параллельных диода).
Перепаял, пашут, как новые.

Foxyara написал:
. Каким способом, без серьезных вложений, можно защитить светильники?

Скорее всего цена защиты может превысить стоимость светильников.
Но если ток не большой – попробовать поставить низкоомное сопротивление и за ним – варистор.
После этого – не будет лишним симметричный LC фильтр, но смотреть чтобы коденсаторы были с рабочим напряжением более чем у варистора . лучше 600 вольтовые

Foxyara ,
Здесь 2 проблемы – хиленький драйвер (лечится) и перегрев ладов
Маякните мне в личку через пару дней напишу как правильно это лечится
Знаю я такие гаджеты но с мобилки сложно писать

strider1978 ,
Ну вот понапридумывали. А может еще факелы поджигать?
Варил ночью, лампа сзади освещенность зоны сварки никакая. И хамелеон срабатывает с запозданием
Взял 20 Вт матрицу из ЛЭДов и безиндуктивный одночиповый драйвер, прикрутил на дюралевый дуршлаг, стойка из куска толстого алюминиевого профиля, все питалось от одного удлинителя.
Никаких проблем, все работает. Маска срабатывала мгновенно.
Один недостаток – в матрице нет сглаживающих конденсаторов посему 100 Гц лезет и иногда маску сбивает с толку. Буду дорабатывать освещение.

Рейтинг
( Пока оценок нет )
Загрузка ...
Adblock
detector